

24 a 27 de março de 2019 Pousada dos Pireneus PIRENÓPOLIS/GO

Maynooth University National University of Ireland Maynooth

Construction and implementation of multivariate dispersion models

Bruna Wundervald 1*, Dennis Leão², Wagner Bonat³

¹Hamilton Institute, Maynooth University *e-mail: brunadaviesw@gmail.com ^{2,3} Federal University of Paraná

Introduction

- Generalized linear models: usual in statistical modelling;
 - \rightarrow mostly univariate cases.
- Multivariate frameworks for GLM are still rare.
- Most multivariate techniques are based on the Multivariate Normal distribution;

Results

- Construction of non-normalized distributions and characterizing them.
- Parameter interpretation.

• Suitable only for continuous and symmetrical data.

- Statistical models are realistic when can describe the dependency structure, when it exists (Temporal, Spatial, Genetic, Longitudinal, etc.)
- We can be interested in more than one response variable, possibly correlated.

The main goals of this work are to:

- Build probability distributions for multivariate, non-normal random variables and its regressions models;
 - discrete, strong asymmetrical and heavy tailed data.
- Implement the models in R [3].

Methods and Materials

Methods

The generalization of a **dispersion model** is defined as

Figure 2: Core of the non-normalized bivariate Binomial distribution.

Figure 3: Core of the non-normalized bivariate Poisson distribution

 $\mu = 5$

$$p(y;\mu,\sigma^2) = a(y;\sigma^2) \exp\left\{-\frac{1}{2\sigma^2}d(y;\mu)\right\}, \quad y \in C,$$
(1)

where $a \ge 0$ is an adequate function, C is the smallest interval containing the realizable values of y, d is a unit deviance in $C \times \Omega$, $\mu \in \Omega$ and $\sigma^2 \in \Re_+$.

Figure 1: Core of a normal distribution, that can be generalized by a the equation of a dispersion model.

In [1], Jørgensen introduced the theory of the dispersion models, that are based on deviance residuals, a function that satisfies Figure 4: Core of the non-normalized bivariate Gamma distribution.

Figure 5: Core of the non-normalized bivariate inverse Normal distribution. Interpretation

- The parameter ρ controls the correlation.
- The dispersion parameters control the variability and shape.
- Similar to the bivariate normal distribution.
- μ is not necessarily a vector of expectations: better interpreted as a vector of modes.

Conclusions and discussion

 $d(y;y) = 0 \quad \forall \ y \in \Omega, \text{ and } d(y;\mu) > 0 \quad \forall \ y \neq \mu.$

being Ω the parametric space for μ , $\Omega \subseteq \Re$. The multivariate extension of the dispersion model was proposed in [2], and has the form

$$p(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Sigma}) = a(\boldsymbol{y};\boldsymbol{\Sigma}) \exp\left\{-\frac{1}{2}t(\boldsymbol{y};\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}t(\boldsymbol{y};\boldsymbol{\mu})\right\},$$
(3)

where $\mu \in \Omega$ is a open interval in \Re^p , Σ is a positive-definite symmetric matrix $p \times p$, and $t(\boldsymbol{y}; \boldsymbol{\mu})$ is a vector of deviance residuals, given by $t(\boldsymbol{y}; \boldsymbol{\mu}) = sign(\boldsymbol{y} - \boldsymbol{\mu})\sqrt{d(\boldsymbol{y}; \boldsymbol{\mu})},$

and $t(\boldsymbol{\mu};\boldsymbol{\mu}) = \mathbf{0}$, for $\boldsymbol{\mu} \in \Omega$.

- The method is simple and the interpretation is intuitive.
- Results about the normalizing constants do not influence directly on the construction of regression models for the location parameters.

Future work includes:

(2)

- Evaluate the approximations to the normalizing constants.
- Inference and full computational implementation.

Bibliography

- [1] Jørgensen, Bent. The Theory of Dispersion Models, 1987
- [2] Bent Jørgensen and Steffen L. Lauritzen Multivariate Dispersion Models.2000.
- [3] R Core Team R: A Language and Environment for Statistical Computing.2018.